Cite this: Org. Biomol. Chem., 2012, 10, 4462

www.rsc.org/obc

PAPER

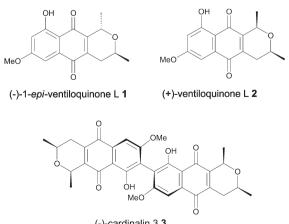
Stereoselective synthesis of (-)-1-epi-ventiloquinone L and (+)-ventiloquinone L, the monomeric unit of cardinalin 3⁺

Rodney A. Fernandes,* Arun B. Ingle and Vijay P. Chavan

Received 1st March 2012, Accepted 23rd March 2012 DOI: 10.1039/c2ob25453k

A stereoselective synthesis of (-)-1-epi-ventiloquinone L and (+)-ventiloquinone L, the monomeric unit of cardinalin 3 has been described. The synthesis is completed in 7 steps with 10.5% and 13% overall yields for (-)-1-epi-ventiloquinone L and (+)-ventiloquinone L respectively. The key steps involve Dötz benzannulation of carbene 5 with alkyne 6 to give a substituted naphthalene moiety and oxa-Pictet-Spengler reaction to install the 1,3-dimethylpyran moiety.

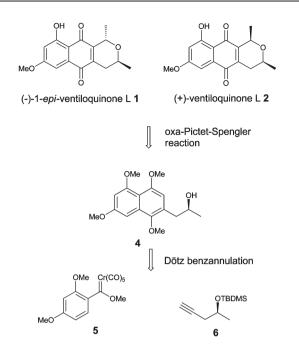
Introduction


The 1,3-dimethylpyranonaphthoquinone moiety is observed in a large number of pyranonaphthoquinone natural products which show a wide range of biological activities.¹ They have also been shown to act as bis-alkylating agents upon bioreduction in a mode resembling the antitumor drug mitomycin C.² In our efforts towards the synthesis of pyranonapthoquinone containing natural products,3 we observed that the sequence of Dötz benzannulation⁴ and oxa-Pictet-Spengler⁵ reaction enables the rapid construction of the 1,3-dimethyl pyranonaphthoquinone framework. In this endeavour we have successfully completed the synthesis of (+)-eleutherin, 3a,b (+)-allo-eleutherin, 3a,b (-)-hongconin, 3c (-)-1-*epi*-hongconin, 3c regioisomeric core of cardinalin 3^{3d} and (+)-demethoxy cardinalin 3^{3e}

(+)-Ventiloquinone L 2 is a cis-1,3-dimethylpyranonaphthoquinone natural product isolated from the acetone extract of the root bark of Ventilago goughii.⁶ Recently Brimble and coworkers reported that ventiloquinone L 2 acts as specific topoisomerase II catalytic inhibitor.⁷ It is also a monomer of dimeric pyranonaphthoquinone natural product (-)-cardinalin 3 3 (Fig. 1). The latter is isolated from the New Zealand toadstool fungi Dermocybe cardinalis.8 The crude ethanolic extract of Dermocybe cardinalis is a potent inhibitor of the growth of P388 murine leukemia cells (IC50 0.47 µg cm⁻³).^{8b} There is one racemic^{9a} and two enantioselective^{9b,c} syntheses of (+)-ventiloquinone L known in the literature. The first enantioselective synthesis is based on Diels-Alder reaction of silyloxybutadiene with a bromoquinone derived from (S)-mellein as the key step and is completed in 10 steps.^{9b} The second enantioselective

synthesis of 2 is based on Hauser-Kraus phthalide annulation with a requisite chiral enone and is completed in 7 steps.^{9c} There is one racemic synthesis of 1-epi-ventiloquinone L 1^{9d} which was known well before the isolation of (+)-ventiloguinone L 2. Herein we report a stereoselective synthesis of (-)-1-epi-ventiloquinone L 1 and (+)-ventiloquinone L 2 employing the Dötz benzannulation⁴ and oxa-Pictet–Spengler⁵ reactions as key steps.

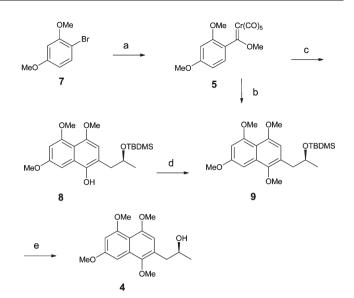
The synthesis of (-)-1-epi-ventiloquinone L and (+)-ventiloquinone L can be retrosynthetically visualized from compound 4 by oxa-Pictet-Spengler reaction followed by oxidation and chemoselective demethylation (Scheme 1). Compound 4 can be obtained from the Fischer carbene 5 by Dötz benzannulation with alkyne 6. From our earlier work, the oxa-Pictet-Spengler reaction can be controlled to stereoselectively produce either a syn or trans-1,3-dimethylpyran moiety.3b,e


The Fischer carbene 5^{10} was prepared from commercially available 1-bromo-2,4-dimethoxybenzene 7. The Dötz benzannulation of carbene 5 with alkyne^{3e} 6 in benzene at 45 °C

(-)-cardinalin 3 3

Fig. 1 (-)-1-Epi-ventiloquinone L 1, (+)-ventiloquinone L 2 and (-)-cardinalin 3 3.

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India. E-mail: rfernand@ chem.iitb.ac.in; Fax: +91 22 25767152; Tel: +91 22 25767174 [†]Electronic supplementary information (ESI) available: Copies of ¹H NMR and ¹³C NMR spectra for all new compounds. See DOI: 10.1039/ c2ob25453k



Scheme 1 Retrosynthetic analysis of (-)-1-*epi*-ventiloquinone L 1 and (+)-ventiloquinone L 2.

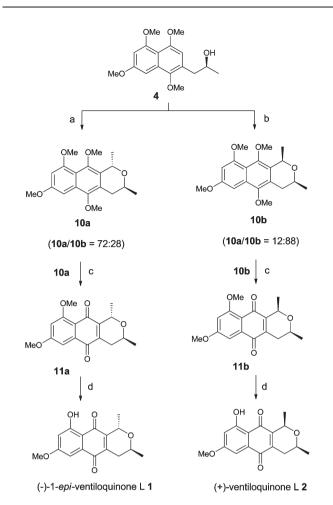
and the *in situ* methylation of the resulting naphthol gave the tetramethoxy naphthalene compound **9** in poor yield (15%). We then adopted a stepwise process involving the Dötz benzannulation and isolation of the naphthol **8** in 35% yield. Further methylation gave **9** in 81% yield (28% over two steps from **5**). The lower yield in the Dötz benzannulation of carbene **5** with alkyne **6** is attributed to the presence of electron rich substituents (–OMe) at the *para* and *ortho* positions of the aryl part of the carbene carbon.¹¹ The compound **9**, upon TBDMS group removal, afforded the desired alcohol **4** in 95% yield (Scheme 2).

The alcohol **4**, on oxa-Pictet–Spengler reaction with acetaldehyde dimethyl acetal in the presence of Lewis acid BF₃·Et₂O in CH₂Cl₂, delivered the mixture of **10a** : **10b** in a 72 : 28 ratio. Our earlier studies showed that the oxa-Pictet–Spengler reactions under protic acid conditions (bubbling HCl gas) in ether solvent were *syn* selective.^{3b,e} When the reaction was carried out by bubbling HCl gas in ether at 0 °C to room temperature for 2 h, the mixture of **10a** : **10b** was obtained in a 33 : 67 ratio. Lowering the reaction temperature to -5 °C to 0 °C for 2.5 hour, improved the **10a** : **10b** ratio to 12 : 88. Further lowering the reaction temperature did not change the diastereoselectivity. Moreover at -15 °C the reaction did not proceed. The two diastereomers **10a** : **10b** were easily separated by flash column chromatography.

The oxidation of compound **10b** using cerium ammonium nitrate (CAN) gave the dimerized products as reported earlier.^{9c} However, when phenyliodine bis(trifluoroacetate) (PIFA) was used **10a** gave the naphthoquinone **11a** in 90% yield. The chemoselective demethylation of naphthoquinone **11a** afforded (–)-1-*epi*-ventiloquinone L **1** (82%). The compound **10b**, after a similar sequence of PIFA oxidation (90%) and demethylation, afforded (+)-ventiloquinone L **2** (81%, Scheme 3), { $[\alpha]_D^{25} =$ +394.1 (c = 0.03, CHCl₃), lit.⁶ [α]_D³⁰ +387.1 (c = 0.01, CHCl₃)}.

Scheme 2 Synthesis of compound 4; Reagents and conditions: (a) *n*-BuLi (1.1 equiv), Et₂O, -78 °C, 20 min, Cr(CO)₆ (1.1 equiv), Et₂O, 0 °C to r.t., 3 h then Me₃O·BF₄ (1.5 equiv), CH₂Cl₂, 0 °C to r.t., 3 h, 80%; (b) **6** (2.0 equiv), benzene, 45 °C, 12 h, NaH (3.0 equiv), THF, MeI (3.0 equiv), 0 °C to r.t., 6 h, 15%; (c) **6** (2.0 equiv), benzene, 45 °C, 12 h, 35%; (d) NaH (2.0 equiv), THF, MeI (2.0 equiv), 0 °C to r.t., 6 h, 95%.

The spectral and analytical data of 1^{9d} and 2^6 is in full agreement with the literature data.


Conclusions

In conclusion, the Dötz benzannulation and oxa-Pictet–Spengler reactions were efficiently employed for the synthesis of 1,3dimethyl pyranonaphthoquinones, (–)-1-*epi*-ventiloquinone L **1** and (+)-ventiloquinone L **2**. The synthesis was completed in 7 steps with 10.5% and 13% overall yields for (–)-1-*epi*-ventiloquinone L **1** and (+)-ventiloquinone L **2** respectively. (+)-Ventiloquinone L **2** is a monomeric unit of the dimeric pyranonaphthoquinone, cardinalin 3.

Experimental section

General remarks

Flasks were oven or flame dried and cooled in a desiccator. Dry reactions were carried out under an atmosphere of Ar or N₂. Solvents and reagents were purified by standard methods. Thinlayer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO₄ or by UV lamp. ¹H-NMR and ¹³C-NMR were recorded on a Bruker Avance^{III} 400 spectrometer and the chemical shifts are based on TMS peak at $\delta = 0.00$ pm for proton NMR and CDCl₃ peak at $\delta = 77.00$ ppm (t) in carbon NMR. IR spectra were obtained on a Perkin Elmer Spectrum One FT-IR spectrometer. Optical rotations were measured with a Jasco P-2000 polarimeter. HRMS was recorded using a Micromass: Q-Tof micro (YA-105) spectrometer.

Scheme 3 Synthesis of (-)-1-*epi*-ventiloquinone L and (+)-ventiloquinone L; Reagents and conditions: (a) $(CH_3O)_2CHCH_3$ (2.0 equiv), BF₃·Et₂O (1.5 equiv), CH₂Cl₂, r.t., 3 h, **10a** (66%), **10b** (26%); (b) $(CH_3O)_2CHCH_3$ (10.0 equiv), HCl(g), Et₂O, -5 °C to 0 °C, 2.5 h, **10a** (11%), **10b** (81%); (c) PIFA (2.0 equiv), H₂O-CH₃CN (1 : 1), 0 °C, 5 min, 90%; (d) BCl₃ (2.0 equiv), CH₂Cl₂, -78 °C, 30 min, r.t., 2 h, **1** (82%), **2** (81%).

Methoxy (2,4-dimethoxyphenyl)methylene pentacarbonyl chromium (5)

To a solution of 1-bromo-2,4-dimethoxybenzene 7 (2.0 g, 9.21 mmol) in dry ether (40 mL) at -78 °C under an argon atmosphere was added n-BuLi (6.3 mL, 10.13 mmol, 1.6 M in hexane, 1.1 equiv). The reaction mixture was stirred for 20 min and then added to a suspension of chromium hexacarbonyl (2.23 g, 10.13 mmol, 1.1 equiv) in dry ether (20 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and brought to room temperature and stirred for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (60 mL), cooled to 0 °C and Me₃·OBF₄ (2.04 g, 13.82 mmol, 1.5 equiv) was added in portions. The reaction mixture was stirred at 0 °C for 1 hour and room temperature for 2 hours and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-CH₂Cl₂ (9:1 to 4:1) as eluent to give 5 (2.74 g, 80%) as a brown-red solid. M.p. 72-73 °C, lit.¹⁰ 73-74 °C. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 3.20$ (s, 3H, *OMe*), 3.32 (s, 3H, OMe), 3.50 (s, 3H, OMe), 6.16 (m, 2H, Ar-H),

6.60 (d, J = 8.2 Hz, 1H, Ar-*H*). Other spectroscopic data is the same as reported.¹⁰

(*S*)-2-(2-(*tert*-Butyldimethylsilyloxy)propyl)-4,5,7-trimethoxy-naphthalen-1-ol (8)

To a freshly prepared chromium carbene complex 5 (2.74 g, 7.36 mmol) in dry and degassed benzene (50 mL) was added (S)-tert-butyldimethyl(pent-4-yn-2-yloxy)silane 6^{3e} (2.92 g, 14.72 mmol, 2.0 equiv). The reaction mixture was stirred at 45 °C for 12 h. It was then cooled to room temperature and exposed to air and stirred for a further 30 min. The reaction mixture was concentrated and the residue purified by silica gel column chromatography using petroleum ether-EtOAc (9:1 to 4:1) as eluent to give 8 (1.05 g, 35%) as a pale yellow liquid. $[\alpha]_{D}^{25} = -31.9$ (c = 0.28, CHCl₃). IR (CHCl₃): v = 3414, 3019, 2932, 2858, 1699, 1624, 1610, 1465, 1381, 1324, 1258, 1155, 1122, 1075, 1057, 1001, 837 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = -0.04$ (s, 3H, CH₃-Si), 0.07 (s, 3H, CH₃-Si), 0.91 (s, 9H, $3 \times CH_3$ -C-Si), 1.20 (d, J = 6.1 Hz, 3H, 3'-CH₃), 2.78 (dd, J = 14.5, 7.1 Hz, 1H, 1'- H_a), 2.92 (dd, J = 14.5, 2.3 Hz, 1H, 1'-H_b), 3.88 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 4.26-4.32 (m, 1H, 2'-H), 6.40 (s, 1H, 3-Ar-H), 6.50 (d, J = 2.3 Hz, 1H, 6-Ar-H), 7.20 (d, J = 2.4 Hz, 1H, 8-Ar-H), 8.23 (s, 1H, OH) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = -5.2, -4.8, 18.0, 22.8, 25.8$ (3C), 41.8, 55.3, 56.1, 57.5, 71.4, 93.4, 98.6, 109.2, 119.0, 129.5, 137.3, 144.3, 150.2, 157.7 (2C) ppm. HRMS (ESI+) calcd for $[C_{22}H_{34}O_5Si + H]^+$: 407.2254, found: 407.2250.

(*S*)-*tert*-Butyldimethyl[1-(1,4,5,7-tetramethoxynaphthalen-2-yl)propan-2-yloxy|silane (9)

To a solution of 8 (0.4 g, 0.984 mmol) in THF (15 mL) was added oil free NaH (47.2 mg, 1.97 mmol, 2.0 equiv) at 0 °C and the mixture stirred for 10 min. Then MeI (0.123 mL, 1.97 mmol, 2.0 equiv) was added and stirred for 6 hours. The reaction was quenched with water (10 mL) and the solution extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (9:1 to 4:1) as eluent to afford 9 (0.335 g, 81%) as pale yellow liquid. $[\alpha]_D^{25} = 24.1$ (c = 0.3, CHCl₃). IR (CHCl₃): v = 2956, 2930, 2856, 1676, 1621, 1606, 1468, 1404, 1380, 1246, 1155, 1124, 1083, 1061, 1006, 833 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = -0.14$ (s, 3H, CH_3 -Si), -0.03 (s, 3H, CH_3 -Si), 0.84 (s, 9H, 3 × CH_3 -C-Si), 1.19 (d, J = 6.0 Hz, 3H, 3- CH_3), 2.78 (dd, J = 13.1, 5.9 Hz, 1H, $1-H_a$), 2.92 (dd, J = 13.1, 7.0 Hz, 1H, $1-H_b$), 3.84 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.94 (s, 3H, *OCH*₃), 4.11–4.17 (m, 1H, 2-*H*), 6.49, (d, *J* = 2.4 Hz, 1H, 6'-Ar-H), 6.55 (s, 1H, 3'-Ar-H), 6.96 (d, J = 2.3 Hz, 1H, 8'-Ar-H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = -5.00, -4.9, 18.1,$ 23.8, 25.8 (3C), 40.8, 55.2, 56.2, 56.6, 61.0, 69.2, 92.9, 98.3, 107.5, 113.0, 128.8, 132.0, 146.9, 153.0, 158.4, 158.6 ppm. HRMS (ESI+) calcd for $[C_{23}H_{36}O_5Si + H]^+$: 421.2410, found: 421.2392.

(S)-1-(1,4,5,7-Tetramethoxynaphthalen-2-yl)propan-2-ol (4)

To a solution of compound 9 (0.2 g, 0.475 mmol) in dry THF (20 mL) was added TBAF (0.95 mL, 0.95 mmol, 1 M solution in THF, 2.0 equiv). The reaction mixture was stirred at room temperature for 6 h. It was then quenched with water (10 mL), THF was removed under reduced pressure and the solution extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with brine, dried (Na_2SO_4) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (9:1 to 3:2) as eluent to give 4 (0.138 g, 1.138 g)95%) as a thick oil. $[\alpha]_D^{25} = 26.7$ (c = 0.4, CHCl₃). IR (CHCl₃): v= 3481, 3018, 2965, 2939, 2843, 1619,1606, 1511, 1467, 1450, 1404, 1381, 1355, 1263, 1173, 1154, 1121, 1082, 1060, 1004, 941, 930, 834 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): δ = 1.29 (d, J = 6.2 Hz, 3H, 3- CH_3), 2.90 (d, J = 6.1 Hz, 2H, 1-H), 3.86 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.94 (s, 3H, OCH_3), 4.16–4.21 (m, 1H, 2-H), 6.49, (d, J = 2.4Hz, 1H, 6'-Ar-H), 6.51 (s, 1H, 3'-Ar-H), 6.96 (d, J = 2.3 Hz, 1H, 8'-Ar-H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 23.2, 40.4,$ 55.2, 56.3, 56.7, 61.0, 68.6, 92.9, 98.6, 106.5, 113.2, 127.9, 132.0, 146.8, 153.7, 158.7 (2C) ppm. HRMS (ESI+) calcd for $[C_{17}H_{22}O_5 + H]^+$: 307.1545, found: 307.1550.

(1*S*,3*S*)-5,7,9,10-Tetramethoxy-1,3-dimethyl-3,4-dihydro-1*H*benzo[*g*]isochromene (10a) and (1*R*,3*S*)-5,7,9,10-tetramethoxy-1, 3-dimethyl-3,4-dihydro-1*H*-benzo[*g*]isochromene (10b) [Reaction conditions (a) in Scheme 3]

To a stirred solution of 4 (20 mg, 0.065 mmol) in dry CH₂Cl₂ (10 mL) was added (CH₃O)₂CHCH₃ (11.72 mg, 0.13 mmol, 2.0 equiv) and BF₃·OEt₂ (13.9 mg, 0.098 mmol, 1.5 equiv) at room temperature. The reaction mixture was stirred for 3 hours at room temperature. Water (10 mL) was added and the organic layer separated. The aqueous layer was extracted with CH₂Cl₂ $(3 \times 15 \text{ mL})$ and the combined organic extracts were washed with water, brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (9:1 to 4:1) as eluent to give a mixture of 10a and 10b (20.4 mg, 94%) as a colorless oil (¹H NMR analysis of the mixture indicated, 10a: 10b = 72: 28). The mixture was separated by flash silica gel column chromatography using petroleum ether-EtOAc (19:1 to 9:1) to give 10b (5.6 mg, 26%) and further elution gave 10a (14.3 mg, 66%). Data for **10a**: colorless solid; m.p. 65–67 °C. $[\alpha]_D^{25} = 31.5$ (c = 0.2, CHCl₃). IR (CHCl₃): v = 2967, 2931, 2839, 1623, 1600, 1580, 1465, 1451, 1411, 1383, 1358, 1342, 1259, 1229, 1204, 1160, 1104, 1070, 1056, 1012, 975, 944, 832 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 1.39$ (d, J = 6.1 Hz, 3H, 3-CH₃), 1.62 (d, J = 6.6 Hz, 3H, 1- CH_3), 2.57 (dd, J = 16.9, 11.0 Hz, 1H, $4-H_a$), 3.04 (dd, J = 17.0, 3.3 Hz, 1H, $4-H_b$), 3.78 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.98 (s, 3H, *OCH*₃), 4.09–4.17 (m, 1H, 3-*H*), 5.29 (q, *J* = 6.6 Hz, 1H, 1-*H*), 6.50 (d, J = 2.3 Hz, 1H, 8-Ar-H), 6.95 (d, J = 2.3 Hz, 1H, 6-Ar-*H*) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.8, 22.1, 30.7,$ 55.3, 56.0, 60.1, 61.9, 62.2, 68.8, 92.3, 98.6, 115.1, 124.9, 127.5, 130.3, 148.0, 148.3, 157.3, 157.9 ppm. HRMS (ESI+) calcd for $[C_{19}H_{24}O_5 + H]^+$: 333.1702, found: 333.1706. Data for **10b**: colorless solid; m.p. 74–76 °C, lit.^{9c} 75–76 °C. $[\alpha]_D^{25} = 62.4$

(c = 0.35, CH₂Cl₂) lit.^{9 $c} [<math>\alpha$]_D²⁵ = 65.6 (c 0.44, CH₂Cl₂). IR (CHCl₃): v = 3005, 2971, 2935, 2839, 1622, 1599, 1583, 1499, 1468, 1450, 1411, 1382, 1338, 1259, 1226, 1205, 1183, 1157, 1133, 1076, 1057, 1018, 973, 942, 832 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 1.41$ (d, J = 6.1 Hz, 3H, 3-CH₃), 1.67 (d, J = 6.2 Hz, 3H, 1-CH₃), 2.57 (dd, J = 16.0, 10.9 Hz, 1H, 4-H_a), 3.03 (dd, J = 16.0, 1.5 Hz, 1H, 4-H_b), 3.64–3.69 (m, 1H, 3-H), 3.74 (s, 3H, OCH₃), 5.20 (q, J = 6.2 Hz, 1H, 1-H), 6.51 (d, J = 2.2 Hz, 1H, 8-Ar-H), 6.97 (d, J = 2.3 Hz, 1H, 6-Ar-H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.8$, 23.2, 32.0, 55.3, 56.1, 60.6, 61.5, 69.3, 71.2, 92.3, 98.7, 115.3, 126.6, 127.8, 130.3, 147.7, 149.4, 157.4, 158.0 ppm. HRMS (ESI+) calcd for [C₁₉H₂₄O₅ + H]⁺: 333.1702, found: 333.1700.</sup>

(1S,3S)-5,7,9,10-Tetramethoxy-1,3-dimethyl-3,4-dihydro-1*H*-benzo-[g]isochromene (10a) and (1*R*,3*S*)-5,7,9,10-tetramethoxy-1, 3dimethyl-3,4-dihydro-1*H*-benzo[g]isochromene (10b) [Reaction conditions (b) in Scheme 3]

Dry HCl gas was bubbled through a stirred solution of **4** (0.13 g, 0.424 mmol) and (CH₃O)₂CHCH₃ (0.45 mL, 4.24 mmol, 10.0 equiv) in dry ether (10 mL) at -5 °C for 1 hour. It was then stirred at 0 °C for 1.5 h. The solvent was evaporated and the residue was purified by silica gel column chromatography using petroleum ether–EtOAc (9:1 to 4:1) as eluent to give a mixture of **10a** and **10b** (131 mg, 93%) as a colorless oil (¹H NMR analysis of the mixture indicated, **10a**: **10b** = 12:88). The mixture was separated by flash silica gel column chromatography using petroleum ether–EtOAc (19:1 to 9:1) to give **10b** (112.5 mg, 81%) and further elution gave **10a** (15 mg, 11%). Data for **10a** and **10b** were the same as above.

(1*S*,3*S*)-7,9-Dimethoxy-1,3-dimethyl-3,4-dihydro-1*H*-benzo[*g*]isochromene-5,10-dione (11a)

To a stirred solution of 10a (20 mg, 0.06 mmol) in CH₃CN (5 mL) and water (5 mL) was added phenyliodine bis(trifluoroacetate) (PIFA) (51.6 mg, 0.12 mmol, 2.0 equiv). The reaction mixture was stirred 0 °C for 5 min. It was then diluted with EtOAc (10 mL) and the organic layer separated. The aqueous layer was extracted with EtOAc (3×10 mL) and the combined organic extracts were washed with water, brine, dried (Na_2SO_4) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (4:1 to 7:3) as eluent to afford 11a (16.4 mg, 90%) as a yellow solid. M.p. 146–148 °C, lit.^{9d} 147–149 °C (for racemic). $[\alpha]_{D}^{25} = -3.9$ $(c = 0.4, \text{ CHCl}_3)$. IR (CHCl₃): v = 3020, 2978, 2934, 1652,1596, 1566, 1456, 1429, 1320, 1275, 1160, 1067, 921 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 1.34$ (d, J = 6.2 Hz, 3H, $3-CH_3$), 1.54 (d, J = 6.8 Hz, 3H, $1-CH_3$), 2.22 (ddd, J = 18.9, 10.2, 2.0 Hz, 1H, $4-H_a$), 2.68 (dd, J = 18.9, 3.4 Hz, 1H, $4-H_b$), 3.95 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 3.36-4.01 (m, 1H, 3-*H*), 5.00 (dq, J = 6.8, 1.4 Hz, 1H, 1-*H*), 6.72 (d, J = 2.4 Hz, 1H, 8-Ar-*H*), 7.26 (d, *J* = 2.4 Hz, 1H, 6-Ar-*H*) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 19.9, 21.5, 29.5, 55.9, 56.4, 62.4, 67.5, 103.1, 104.1, 114.2, 135.7, 138.7, 148.2, 161.9, 164.5, 181.7, 184.3 ppm. HRMS (ESI+) calcd for $[C_{17}H_{18}O_5 + H]^+$: 303.1232, found: 303.1236.

(1*R*,3*S*)-7,9-Dimethoxy-1,3-dimethyl-3,4-dihydro-1*H*-benzo[*g*]-isochromene-5,10-dione (11b)

The title compound was prepared from 10b (20 mg, 0.06 mmol) by a similar procedure as described for 11a to give 11b (16.4 mg, 90%) as a yellow solid. M.p. 150-152 °C, lit.¹² 153–154 °C. $[\alpha]_{D}^{25} = 338.9 \ (c = 0.22, \text{ CH}_2\text{Cl}_2) \text{ lit.}^{9c} \ [\alpha]_{D}^{20} 344.4$ $(c = 0.5, CH_2Cl_2)$. IR (CHCl₃): v = 3011, 2974, 2936, 2852,1652, 1596, 1568, 1456, 1429, 1347, 1323, 1274, 1200, 1160, 1069, 1005, 942, 845, 828 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 1.36$ (d, J = 6.2 Hz, 3H, 3-CH₃), 1.54 (d, J = 6.6 Hz, 3H, 1-CH₃), 2.19 (ddd, J = 18.2, 10.2, 3.8 Hz, 1H, 4- H_a), 2.72 (dt, J = 18.2, 2.6 Hz, 1H, 4- H_b), 3.54–3.59 (m, 1H, 3-H), 3.94 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 4.81-4.87 (m, 1H, 1-H), 6.71(d, J = 2.4 Hz, 1H, 8-Ar-H), 7.24 (d, J = 2.4 Hz, 1H, 6-Ar-H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.0, 21.2, 30.0, 55.9, 56.4, 68.7, 70.4, 102.9, 104.2, 114.7,$ 135.7, 139.4, 148.8, 161.6, 164.4, 182.6, 184.1 ppm. HRMS (ESI+) calcd for $[C_{17}H_{18}O_5 + H]^+$: 303.1232, found: 303.1236.

(1*S*,3*S*)-9-Hydroxy-7-methoxy-1,3-dimethyl-3,4-dihydro-1*H*-benzo[*g*]isochromene-5,10-dione, (-)-1-*epi*-ventiloquinone L (1)

To a solution of 11a (10 mg, 0.033 mmol) in CH₂Cl₂ (10 mL) was added BCl₃ (0.07 mL, 0.07 mmol, 1M solution in CH₂Cl₂, 2.0 equiv) at -78 °C. The resulting dark red solution was stirred at -78 °C for 30 min and then warmed to room temperature and stirred for 2 h. The reaction mixture was poured into water (10 mL) and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were washed with water, brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (19:1 to 9:1) as eluent to afford 1 (7.82 mg, 82%) as a yellow solid. M.p. 175-177 °C, lit.9d 176-177.5 °C for racemic compound. $[\alpha]_{D}^{25} = -59.6$ (c = 0.1, CHCl₃). IR (CHCl₃): v = 3434, 3019, 2978, 2930, 2852, 1633, 1642, 1614, 1490, 1446, 1390, 1369, 1311, 1272, 1164, 1147, 1055, 992, 861 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃/TMS): $\delta = 1.34$ (d, J = 6.2 Hz, 3H, 3-CH₃), 1.56 (d, J = 6.8 Hz, 3H, 1-CH₃), 2.22 (ddd, J = 19.2, 10.2, 2.1 Hz, 1H, $4-H_a$), 2.72 (dd, J = 19.3, 3.2 Hz, 1H, $4-H_b$), 3.90 (s, 3H, OCH_3), 3.95–4.01 (m, 1H, 3-H), 4.99 (dq, J = 6.8, 2.0 Hz, 1H, 1-H), 6.62 (d, J = 2.5 Hz, 1H, 8-Ar-H), 7.17 (d, J = 2.5 Hz, 1H, 6-Ar-*H*), 12.28 (s, 1H, Ar-*OH*) ppm. ¹³C-NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 19.8, 21.5, 29.9, 56.0, 62.4, 67.0, 106.1,$ 107.8, 109.3, 133.3, 142.0, 146.7, 164.3, 165.8, 183.2, 186.8. ppm. HRMS (ESI+) calcd for $[C_{16}H_{16}O_5 + H]^+$: 289.1076, found: 289.1062.

(1*R*,3*S*)-9-Hydroxy-7-methoxy-1,3-dimethyl-3,4-dihydro-1*H*benzo[*g*]isochromene-5,10-dione, (+)-ventiloquinone L (2)

The title compound was prepared from **11b** (40 mg, 0.132 mmol) by a similar procedure as described for **1** to give **2** (31 mg, 81%) as a yellow solid. M.p. 122–124 °C, lit.⁶ 126 °C. $[\alpha]_{D}^{25} = 394.1 \ (c = 0.03, CHCl_3), lit.^6 \ [\alpha]_{D}^{30} = 387.1 \ (c = 0.01, CHCl_3).$ IR (CHCl_3): $v = 3478, 3016, 2978, 2931, 2852, 1637, 1611, 1449, 1389, 1320, 1303, 1270, 1208, 1155, 1100, 1029, 911 cm⁻¹. ¹H-NMR (400 MHz, CDCl_3/TMS): <math>\delta = 1.37$ (d, J = 6.2 Hz, 3H, 3-*CH*₃), 1.58 (d, J = 6.6 Hz, 3H, 1-*CH*₃), 2.21

(ddd, J = 18.6, 10.2, 4.0 Hz, 1H, 4- H_a), 2.74 (dt, J = 18.6, 2.6 Hz, 1H, 4- H_b), 3.54–3.62 (m, 1H, 3-H), 3.90 (s, 3H, OCH_3), 4.79–44.87 (m, 1H, 1-H), 6.63 (d, J = 2.5 Hz, 1H, 8-Ar-H), 7.17 (d, J = 2.4 Hz, 1H, 6-Ar-H), 12.26 (s, 1H, Ar-OH) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.18$, 21.21, 30.6, 56.0, 68.6, 69.8, 106.2, 107.6, 109.6, 133.3, 143.2, 146.8, 164.3, 165.8, 183.1, 187.5 ppm. HRMS (ESI+) calcd for [C₁₆H₁₆O₅ + H]⁺: 289.1076, found: 289.1062.

Acknowledgements

The authors are indebted to Board of Research in Nuclear Sciences (BRNS), Government of India (Grant No. 2009/37/25 BRNS) and Department of Science and Technology New Delhi (DST Grant No. SR/S1/OC-25/2008) for financial support. A.B.I. and V.P.C thank the Council of Scientific and Industrial Research (CSIR), New Delhi for senior research fellowships.

Notes and references

- 1 M. A. Brimble, L. J. Duncalf and M. R. Nairn, Nat. Prod. Rep., 1999, 16, 267.
- 2 H. W. Moore and R. Czerniak, Med. Res. Rev., 1981, 1, 249.
- 3 (a) R. A. Fernandes, V. P. Chavan and A. B. Ingle, *Tetrahedron Lett.*, 2008, **49**, 6341; (b) R. A. Fernandes, V. P. Chavan and S. V. Mulay, *Tetrahedron: Asymmetry*, 2011, **22**, 487; (c) R. A. Fernandes and V. P. Chavan, *Eur. J. Org. Chem.*, 2010, 4306; (d) R. A. Fernandes and S. V. Mulay, *Synlett*, 2010, 2667; (e) R. A. Fernandes and S. V. Mulay, *J. Org. Chem.*, 2010, **75**, 7029.
- 4 (a) K. H. Dötz, Angew. Chem., 1975, 87, 672; K. H. Dötz, Angew. Chem., Int. Ed. Engl., 1975, 14, 644; Reviews: (b) K. H. Dötz, Angew. Chem., 1984, 96, 573; K. H. Dötz, Angew. Chem., Int. Ed. Engl., 1984, 23, 587; (c) K. H. Dötz and J. Stendel Jr., in Modern Arene Chemistry, ed. D. Astruc, Wiley-VCH, Weinheim, Germany, 2002, pp. 250-296; (d) T. Ito and M. Minato, in Compounds of Groups 7-3, (Mn..., Cr..., V..., Ti..., Sc..., La..., Ac...) Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, ed. T. Imamoto, Thieme, Stuttgart, Germany, 2002, vol. 2, pp. 333-380; (e) K. H. Dötz, B. Wenzel Jr. and H. C. Jahr, Top. Curr. Chem., 2005, 248, 63; (f) M. L. Waters and W. D. Wulff, Org. React., 2008, 70, 121; (g) E. A. Couladouros and T. A. Stromgilos, in Quinones and Heteroatom Analogues Science of Synthesis Houben-Weyl Methods of Molecular Transformations, ed. A. G. Griesbeck, Thieme, Stuttgart, Germany, 2006, vol. 28, pp. 217-322; (h) M. F. Semmelhack, J. J. Bozell, T. Sato, W. Wulff, E. Spiess and A. Zask, J. Am. Chem. Soc., 1982, 104, 5850; (i) M. F. Semmelhack, J. J. Bozell, L. Keller, T. Sato, E. J. Spiess, W. Wulff and A. Zask, Tetrahedron, 1985, 41, 5803.
- 5 E. L. Larghi and T. S. Kaufman, Eur. J. Org. Chem., 2011, 5195, and references cited therein.
- 6 S. R. Jammula, S. B. Pepalla, H. Telikepalli, K. V. J. Rao and R. H. Thomson, *Phytochemistry*, 1991, **30**, 3741.
- 7 J. Sperry, I. Lorenzo-Castrillejo, M. A. Brimble and F. Machín, *Bioorg. Med. Chem.*, 2009, 17, 7131.
- 8 (a) M. S. Buchanan, M. Gill and J. Yu, Aust. J. Chem., 1997, 50, 1081; (b) M. S. Buchanan, M. Gill and J. Yu, J. Chem. Soc., Perkin Trans. 1, 1997, 919.
- 9 (a) E. M. Mmutlane, J. P. Michael, I. R. Green and C. B. de Koning, Org. Biomol. Chem., 2004, 2, 2461; (b) L. M. Tewierik, C. Dimitriadis, C. D. Donner, M. Gill and B. Willems, Org. Biomol. Chem., 2006, 4, 3311; (c) J. Sperry, J. J. P. Sejberg, F. M. Stiemke and M. A. Brimble, Org. Biomol. Chem., 2009, 7, 2599; (d) D. W. Cameron, G. I. Feutrill and G. A. Pietersz, Aust. J. Chem., 1982, 35, 1481.
- 10 K. H. Dötz, W. Sturm, M. Popall and J. Riede, J. Organomet. Chem., 1984, 277, 267.
- 11 (a) M. E. Bos, W. D. Wulff, R. A. Miller, S. Chamberlin and T. A. Brandvold, J. Am. Chem. Soc., 1991, 113, 9293; (b) V. P. Liptak and W. D. Wulff, *Tetrahedron*, 2000, 56, 10229.
- 12 L. A. Mitscher, S. R. Gollapudi, D. S. Oburn and S. Drake, *Phytochemistry*, 1985, 24, 1681.